Computational Intelligence: A Methodological Introduction by Frank Klawonn, Christian Borgelt, Matthias Steinbrecher,

By Frank Klawonn, Christian Borgelt, Matthias Steinbrecher, Rudolf Kruse, Christian Moewes, Pascal Held

Computational intelligence (CI) incorporates a diversity of nature-inspired tools that express clever habit in advanced environments.

This clearly-structured, classroom-tested textbook/reference provides a methodical advent to the sphere of CI. supplying an authoritative perception into all that's beneficial for the winning software of CI tools, the publication describes primary ideas and their sensible implementations, and explains the theoretical heritage underpinning proposed suggestions to universal difficulties. just a simple wisdom of arithmetic is required.

Topics and features:
* presents digital supplementary fabric at an linked site, together with module descriptions, lecture slides, routines with ideas, and software program tools
* comprises various examples and definitions in the course of the text
* offers self-contained discussions on synthetic neural networks, evolutionary algorithms, fuzzy platforms and Bayesian networks
* Covers the newest ways, together with ant colony optimization and probabilistic graphical models
* Written by means of a workforce of highly-regarded specialists in CI, with huge event in either academia and industry

Students of laptop technology will locate the textual content a must-read reference for classes on man made intelligence and clever platforms. The publication is usually a great self-study source for researchers and practitioners interested by all parts of CI.

Show description

Read or Download Computational Intelligence: A Methodological Introduction (Texts in Computer Science) PDF

Best artificial intelligence books

Theoretical Foundations of Artificial General Intelligence

This e-book is a suite of writings by means of lively researchers within the box of man-made basic Intelligence, on issues of important significance within the box. every one bankruptcy makes a speciality of one theoretical challenge, proposes a singular answer, and is written in sufficiently non-technical language to be comprehensible through complicated undergraduates or scientists in allied fields.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

Algorithms more and more run our lives. They locate books, videos, jobs, and dates for us, deal with our investments, and observe new medicinal drugs. progressively more, those algorithms paintings through studying from the paths of information we go away in our newly electronic international. Like curious childrens, they realize us, imitate, and test.

Programming Multi-Agent Systems in AgentSpeak using Jason

Jason is an Open resource interpreter for a longer model of AgentSpeak – a logic-based agent-oriented programming language – written in Java™. It allows clients to construct complicated multi-agent structures which are in a position to working in environments formerly thought of too unpredictable for desktops to address.

Reactive Kripke Semantics

This article bargains an extension to the normal Kripke semantics for non-classical logics by means of including the thought of reactivity. Reactive Kripke versions switch their accessibility relation as we development within the review means of formulation within the version. this option makes the reactive Kripke semantics strictly greater and extra appropriate than the conventional one.

Extra info for Computational Intelligence: A Methodological Introduction (Texts in Computer Science)

Example text

Xn of die Folge < f(xn) > stets gegen denselben Grenzwert G, so heißt G Grenzwert der Funktion für xn ofbzw. xn of. Wir schreiben dafür: lim f ( x) = G bzw. lim xof f ( x) = G (2-10) xof Ist G gleich "+ f"oder "- f ", so sprechen wir auch von einem uneigentlichen Grenzwert. Es gelten hier auch die vorher genannten Grenzwertsätze. b) Eine Gerade g: x = a (Parallele zur y-Achse) heißt Asymptote der Funktion f: y = f(x), wenn gilt: f ( x) = f ; lim xoa lim f ( x) = f (2-11) xoa a heißt Pol der Funktion f.

Die Kurve hat bei x1 = a einen Pol. Abb. 16: Berechnen Sie die Asymptoten der nachfolgenden Funktion und stelle die Funktion und Asymptoten grafisch dar. 5 lim x2 ˜ e x o0 xof 0 5 10 15 20 x Asymptote mit der Gleichung y = 0 Abb. 17: Berechnen Sie die Asymptoten für die Feldstärke eines Kugelkondensators. E ( x) = lim xo0 Abb. 5 10 6 V cm Bereichsvariable Abb. 18: Berechnen Sie die Asymptoten für die magnetische Feldstärke H eines stromdurchflossenen Leiters. Außerhalb des Leiters mit Radius r gilt für die magnetische Feldstärke: lim H ( x) = 0 und lim xof H ( x) = 0 H ( x) = I 2˜ S ˜ x = k x ist Asymptote H ( x) = 0 xof Innerhalb des Leiters gilt unter der Annahme, dass die Stromverteilung über dem Leiterquerschnitt gleichmäßig ist: I I ( x) I = A ( x) A 2 = x ˜S 2 r ˜S 2 = x 2 Ÿ I I ( x) = r 1 2 H ( x)  2 ˜x und damit H ( x) = r I 5˜ A r 2 I ( x) 2˜ S ˜ x 2 = gegebener Strom ˜ mm gegebener Radius I 2˜ S ˜ x I 2 if ( x !

Eine konvergente bzw. divergente Reihe bleibt konvergent bzw. divergent, wenn endlich viele Glieder abgeändert werden. f 4. Konvergiert ¦ k f k ¦ ak gegen s, so konvergiert auch 1 k f ¦ Divergiert f ak , so divergiert auch 1 ¦ k c ˜ ak gegen c s (c ). (1-36) 1 c ˜ ak . (1-37) 1 f 5. ). ). (1-39) nof 1 f lim 6. 732 6 Abb. 2 Abb. 083 s8 s4 ! 718 s8 ! 381 s16 ! 744 s64 ! 4 Die Partialsummenfolge ist nicht beschränkt und divergiert. f ¦ n 1 of n Die Reihe ist divergent! 3: Berechnen sie den Summenwert folgender Reihe numerisch und symbolisch: f 1 ¦ n = n ˜ ( n  1) 1 2  1 6  1 12  1 20 1  30  ....

Download PDF sample

Rated 4.43 of 5 – based on 29 votes